343. The Crystal Structures of ThSe_{2} and $\mathrm{Th}_{7} \mathrm{Se}_{12}$.

By R. W. M. D'Eye.

Abstract

The crystal structures of ThSe_{2} and $\mathrm{Th}_{7} \mathrm{Se}_{12}$ have been determined from powder photographs obtained by use of Guinier-type focusing cameras. ThSe_{2} is orthorhombic with $a=4.411 \pm 0.002 \mathrm{kX}, b=7.595 \pm 0.002 \mathrm{kX}, c=$ $9.046 \pm 0.002 \mathrm{kX}$. There are 4 molecules per unit cell and the space-group is $D_{2 h}^{16}-P m n b$. $\mathrm{Th}_{7} \mathrm{Se}_{12}$ is hexagonal with $a=11.546 \pm 0.006 \mathrm{kX} c=$ $4.22 \pm 0.01 \mathrm{kX}$. There is one molecule per unit cell and the space-group is $C_{6 \hbar}^{2}-P 6_{3} / m$. Both compounds are thus isostructural with their corresponding sulphides.

In a recent report (D'Eye, Sellman, and Murray, J., 1952, 2555) of an investigation of the $\mathrm{Th}-\mathrm{Se}$ system the compounds ThSe_{2} and $\mathrm{Th}_{7} \mathrm{Se}_{12}$ were described. However, owing to the poor powder-diffraction data obtained from Debye-Scherrer photographs it was then not possible to determine unambiguously the crystal structures of these two compounds. Through the courtesy of Professor G. Hägg in allowing me to work at his Institute in Uppsala University, Sweden, it has been possible to obtain good diffraction data by use of Guinier-type focusing cameras which necessarily eliminate the spacing errors caused by absorption in the specimen. It was tentatively suggested in the previous communication that $\mathrm{Th}_{7} \mathrm{Se}_{12}$ and $\mathrm{ThSe} e_{2}$ had hexagonal and orthorhombic lattices, respectively, and that they were isostructural with their corresponding sulphides. This has now been established.

Experimental

X-Ray photographs were obtained by using Guinier-type focusing cameras with a bent quartz-crystal monochromator and $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. The intensities of the resulting diffraction lines were visually estimated. The expression for the intensity of a diffraction line on a Guiniertype photograph is $I_{c} \propto A_{1} A_{2} p F^{2}\left(1+\cos ^{2} 2 \theta_{m} \cos ^{2} 2 \theta\right) / \sin ^{2} \theta \cos \theta$, where $I_{c}, \theta, \theta_{m}, A_{1}, A_{2}, p$, and F are respectively the calculated intensity, Bragg angle, the angle the X-ray beam from the anti-cathode makes with the monochromator (for $\mathrm{Cu}, \theta_{m}=13^{\circ} 21^{\prime}$), absorption factor for specimen, absorption factor for film emulsion, multiplicity constant, and structure factor (Hägg, personal communication); but for cases where the absorption in the specimen is low (in this case because of the extreme thinness of the specimen) and where extreme accuracy is not required the expression simplifies to $I_{c} \propto p F^{2}\left(1+\cos ^{2} 2 \theta_{m} \cos ^{2} 2 \theta\right) / \sin ^{2} \theta \cos \theta$, and this expression has been used throughout in calculating intensities.

The diffraction patterns of both compounds were indexed by using the mathematical methods of Hesse (Acta Cryst., 1948, 1, 200) and of Henry, Lipson, and Wooster (" Interpretation of X-Ray Diffraction Photographs," Macmillan, 1951).

Discussion

(1) Structure of ThSe_{2}.-The diffraction pattern was indexed on the basis of an orthorhombic lattice with $a=4.411 \pm 0.002, b=7.595 \pm 0.002, c=9.046 \pm 0.002 \mathrm{kX}$. From Table 1 it is seen that the agreement between observed and calculated $\sin ^{2} \theta$ values is good. The number of molecules per unit cell is 4 , giving a calculated density of 8.5 g ./c.c. (observed, $8.2 \mathrm{~g} . / \mathrm{c} . \mathrm{c}$.). The absences in the observed indices of the reflections indicate that the space-group is $D_{2 h}^{16}-P m n b$. The thorium and selenium atoms will be on the $4(c)$ special position (" International Tables for X-Ray Crystallography, Vol. 1). Intensities calculated with the parameters having the values :

	x	y		\boldsymbol{x}	y		\boldsymbol{x}	y
Th	0.25	$0 \cdot 125$	Se_{1}	0.38	$0 \cdot 43$	Se_{11}	$0 \cdot 47$	$0 \cdot 82$

are seen from Table 1 to be in good agreement with the observed intensities. ThSe_{2} is therefore isostructural with ThS_{2} (Zachariasen, Acta Cryst., 1949, 2, 291).

The thorium atom is thus surrounded by nine selenium atoms at a mean distance of 3.08 kX [cf. the Th-Se distances in ThOSe and ThSe which are respectively 3.15 and 2.93 kX (D'Eye et al., loc. cit.). The individual Th-Se distances (kX) are :

$$
\begin{array}{lll}
\text { Th-2 } \mathrm{Se}_{1}=2.98 & \text { Th-Se }{ }_{1}=2.85 & \text { Th-2 } \mathrm{Se}_{11}=3.09 \\
\text { Th- } \mathrm{Se}_{1}=2.93 & \text { Th-Se } & =3.22
\end{array}
$$

(2) Structure of $\mathrm{Th}_{7} \mathrm{Se}_{12}$. -The powder diffraction pattern was indexed on the basis of a hexagonal cell with $a=11.546 \pm 0.006$ and $c=4.22 \pm 0.01 \mathrm{kX}$. The agreement between observed and calculated $\sin ^{2} \theta$ values is seen from Table 2 to be good. If the formula is $\mathrm{Th}_{7} \mathrm{Se}_{12}$ there will be one molecule per unit cell, giving a calculated density of $8.7 \mathrm{~g} . / \mathrm{c} . \mathrm{c}$. The compounds ThSe, ThSe 2 , and ThOSe are all isostructural with their corresponding sulphides. It would therefore seem a reasonable assumption that $\mathrm{Th}_{7} \mathrm{Se}_{12}$ is isostructural with $\mathrm{Th}_{7} \mathrm{~S}_{12}$ (Zachariasen, loc. cit., p. 288). The structure of $\mathrm{Th}_{7} \mathrm{~S}_{12}$ was

Table 1. (ThSe_{2}).

determined from single-crystal data (idem, ibid.) and has the space-group $C_{6 \hbar}^{2}-P 6_{3} / m$ with 1 Th on the position $2(a)$ and 6 Th as well as $6 \mathrm{~S}_{1}$ and $6 \mathrm{~S}_{11}$ on three positions $6(h)$. The structure exhibits disorder with the one thorium atom on either $00 \frac{1}{4}$ or $00 \frac{3}{4}$.

It was noted that in the case of $\mathrm{Th}_{7} \mathrm{Se}_{12}$ the absences in the observed indices of the reflections were compatible with the space group $C_{6 \hbar}^{2}-P 6_{3} / m$ and the thorium and selenium atoms were accordingly placed on positions $2(a)$ and $6(c)$ and with practically the same parameters as were found for $\mathrm{Th}_{7} \mathrm{~S}_{12}$. The parameters used have the values given below :

	x	y		x	y		x	y
$6 \mathrm{Th}_{11}$	$0 \cdot 15$	-0.28	$6 \mathrm{Se}_{1}$	0.51	$0 \cdot 38$	$6 \mathrm{Se}_{11}$	$0 \cdot 24$	$0 \cdot 0$

Intensities calculated by using these values give fair agreement with the observed intensities, it being borne in mind that the parameters have not been refined for the present case (see Table 2).

Table 2. $\left(\mathrm{Th}_{7} \mathrm{Se}_{12}\right)$.

$h k l$	$\begin{gathered} \sin ^{2} \theta, \\ \text { obs. } \end{gathered}$	$\begin{gathered} \sin ^{2} \theta, \\ \text { calc. } \end{gathered}$	$\begin{gathered} I \\ \text { obs. } \end{gathered}$	$\begin{gathered} I, \\ \text { calc. } \end{gathered}$	$h k l$	$\begin{gathered} \sin ^{2} \theta, \\ \text { obs. } \end{gathered}$	$\begin{aligned} & \sin ^{2} \theta, \\ & \text { calc. } \end{aligned}$	$\begin{gathered} I \\ \text { obs. } \end{gathered}$	$\begin{gathered} I \\ \text { calc } \end{gathered}$
010	-	0059	-	0	311	1103	1104	s-	38
110	-	0178	-	0	320	1124	1125	vvw	1
020	-	0237	-	0	410	1242	1243	s	78
101	0392	0393	w	23	041	1279	1281	vw	11
210	0412	0414	s	100	002	1338	1336	vw +	34
111	0512	0512	vw	16	102	-	1395	-	-
030	0530	0533	vw	1	321	1460	1459	diffuse w	24
021	0570	0571	w	41	420	1656	1658	m	
220	0709	0710	vw	3	501	1814	1814	vw	
211	0746	0748	s	80	421	1995	1992	w	
310	0766	0770	vw	4	511	2172	2169	w	
031	0865	0867	s	57	520	2310	2309	w	
040	0948	0947	w-	5	431	2525	25.4	m	
221	1044	1044	s-	33	521	2646	2643	m	-

$\mathrm{Th}_{7} \mathrm{Se}_{12}$ is therefore isostructural with $\mathrm{Th}_{7} \mathrm{~S}_{12}$, with Th_{1} surrounded by $9 \mathrm{Se}_{11}$ atoms and Th_{11} by $3 \mathrm{Se}_{11}$ and $5 \mathrm{Se}_{1}$ atoms. The individual distances can be calculated (in kX) as :

$$
\begin{array}{llll}
\mathrm{Th}_{11^{-}}-\mathrm{Se}_{1}=3.00 & \mathrm{Th}_{11}-\mathrm{Se}_{11}=2.89 & \mathrm{Th}_{1}-3 \mathrm{Se}_{11}=2.77 \\
\mathrm{Th}_{11^{-}}-4 \mathrm{Se}_{1}=3 \cdot 20 & \mathrm{Th}_{11^{-}}-2 \mathrm{Se}_{11}=2.92 & \mathrm{Th}_{1^{-}}-6 \mathrm{Se}_{11}=3.48
\end{array} \quad \text { Mean } \mathrm{Th}_{11_{1}}-\mathrm{Se}=3.07 \mathrm{kX}
$$

The $\mathrm{Th}_{11_{1}}$-Se distances are compatible with the $\mathrm{Th}-\mathrm{Se}$ distances observed in the compounds ThOSe, ThSe, and ThSe_{2} but the $\mathrm{Th}_{1}-\mathrm{Se}_{11}$ distances are either too low or too high. It appears that, as in the case of $\mathrm{Th}_{7} \mathrm{~S}_{12}$ (Zachariasen, loc. cit.), the Se_{11} atoms must be displaced from their mean positions, the direction depending on whether the $00 \frac{1}{4}$ or the $00 \frac{3}{4}$ position is occupied by the thorium atom. The suggested new Se_{11} positions are given below for the case where the $00 \frac{1}{4}$ position is occupied by Th .

$$
\begin{array}{rlll}
6 \mathrm{Se}_{11} \text { on } 0.27,0,0.25 ; & 0,0 \cdot 27,0.25 ; & 0.73,0 \cdot 73,0.25 \\
\tilde{0.21}, 0,0.75 ; & 0, \widehat{0.21}, 0.75 ; & 0.21,0.21,0.75
\end{array}
$$

The interatomic distances for $\mathrm{Th}_{1}-\mathrm{Se}_{11}$ will now be: $\mathrm{Th}_{1}-3 \mathrm{Se}_{11}=3.12 \mathrm{kX}$, $\mathrm{Th}_{1}-6 \mathrm{Se}_{11}=3.20 \mathrm{kX}$; mean $\mathrm{Th}_{1}-\mathrm{Se}_{11}=3.17 \mathrm{kX}$, which are compatible with other Th-Se distances.

Conclusion.-The results now given add considerable weight to the view expressed earlier (D'Eye et al., loc. cit.) that the Th-Se system is closely analogous to the Th-S system (Eastman et al., J. Amer. Chem. Soc., 1950, 72, 4019).

The author thanks Prof. G. Hägg for valuable advice and interest in the problem and Dr. I. Lindquist for discussion.

Atomic Energy Research Establishment, Harwell, Didcot, Berks.

